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OFF-MOMENTUM 
PARTICLES
Eric Prebys, UC Davis

Off-Momentum Particles
• Our previous discussion implicitly assumed that all particles were at 

the same momentum
• Each quad has a constant focal length

• There is a single nominal trajectory

• In practice, this is never true. Particles will have a distribution about 
the nominal momentum

• We will characterize the behavior of off-momentum particles in the 
following ways
• “Dispersion” (D): the dependence of position on deviations from the nominal 

momentum

D has units of length

• “Chromaticity” (η) : the change in the tune caused by the different focal lengths for 
off-momentum particles

• Path length changes (momentum compaction)
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Review: Equations of Motion

• Recall that in a curvilinear 
coordinate system, the 
equations of motion become

• We’ll now consider consider the effect of of off momentum particle by 
comparing the “true” rigidity to the nominal rigidity
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Off-Momentum Particles

• If we substitute this into the equations of motion, and keep only linear 
terms, we end up with one new term in each equation

• The parts in parentheses just give us our nominal equations of 
motion. We now invoke

• And our new equations become
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• This is a second order differential inhomogeneous differential 
equation, so the solution is

Where d(s) is the solution particular solution of the differential equation

• We solve this piecewise, 
for K constant and find
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General Solution
• The general solution is now

• We can express this in matrix form as
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New Equilibrium Orbit
• We want to solve for an orbit of an off-momentum 

particle that follows the periodicity of the machine.

• This will serve as the new equilibrium orbit for off-
momentum particles. 

• This must satisfy
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“Dispersion” [L]

Simplifying Assumptions
• For the most part, we will consider systems for which 

both of the following are true
• “separated function”: Separate dipoles and quadrupoles

• “Isomagnetic”: All bend dipoles have the same field
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Example: FODO Cell
• We look at our symmetric FODO cell, but assume that the drifts are bend 

magnets that take up the entire space (a pretty good assumption)

• Each bends the beam by an angle 

For a thin lens d~d’~0.  For a pure bend magnet
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Transfer Matrix
• We put this all together to get a

transfer matrix of the form

• Using our solutions
from the previous 
page, we get

• For a ring:
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Solving for Dispersion
• We must solve

• In your homework, you show that
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Evolution of Dispersion Functions
• Since the dispersion functions represent 

displacements, they will evolve like the position 

• Putting it all together
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Momentum Compaction Factor
• In general, particles with a high momentum will travel a 

longer path length. We have
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Slip Factor
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Special Cases for Slip Factor

• Linacs:

• Simple Cyclotrons:

• Synchrotrons: more complicated
• Negative below gT

• Positive above gT
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Transition g for Synchrotrons (approx.)
• For a simple FODO CELL

• If we assume they vary ~linearly between maxima, then 
for small μ

• Also

USPAS Fundamentals, June 4-15, 2018 E. Prebys, Accelerator Fundamentals: Off-Momentum Particles 16

2
sin

2
sin

2

1
1

 and ;
sin

2
sin1

2
2

minmax,minmax, m

m


m

m

b






 ±








 ±

 LDL

b »
2L

m
;  D »

4L
m2  4

L2

m2


b 2





6/4/18

9

(cont’d)

• We just showed

• So

• This approximation generally works better than it should 
• FNAL Booster:  n=6.8, gT=5.5
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Digression: Quadrupole Perturbation
• We can express the matrix for a complete revolution at a point as

• If we add focusing quad at this point, we have

• We calculate the trace to find the new tune

• For small changes
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Total Tune Shift
• The focal length associated with a local anomalous 

gradient is

• So the total tune shift is
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Chromaticity
• In general, momentum changes will lead to a tune shift by changing 

the effective focal lengths of the magnets

• We already showed

• Where
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Chromaticity (Cont’d)
• Recalling that in our general equation of motion

• We see that the effective focal length for a region is

• And we can write our general expression for the 
chromaticity as
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Chromaticity in Terms of Lattice Functions
• A long time ago, we derived the following constraint  when solving our 

Hill’s equation

• (We’re going to use that in a few 
lectures), but for now, divide by β to get

• So our general expression for 
chromaticity becomes
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Chromaticity and Sextupoles
• we can write the field of a sextupole magnet as

• If we put a sextupole in a dispersive region
then off momentum particles will see a 
gradient

which is effectively like a position
dependent quadrupole, with a focal
length given by

• So we write down the tune-shift as 

• Note, this is only valid when the motion 
due to momentum is large compared
to the particle spread.
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